Enter your keyword

2-s2.0-84893564471

[vc_empty_space][vc_empty_space]

Basic theory of artificial circular resonator encapsulated in a circular waveguide and its theoretical analysis

Ludiyati H.a,b, Suksmono A.B.b, Munir A.b

a Department of Electrical, Politeknik Negeri Bandung, Indonesia
b School of Electrical Engineering and Informatics, Institut Teknologi Bandung, Indonesia

[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]The characteristic of artificial circular dielectric material in microwave engineering is studied. The study encompasses theoretical analysis of artificial circular dielectric, such as anisotropic permittivity characteristics, frequency characteristics and resonance mode in transverse electric mode when the material is used as a resonator encapsulated in circular waveguide. In paper present, using Maxwell’s and Helmholtz’s equations in material, the equations in boundary conditions, electric fields and magnetic fields equations are defined. The relationship between a resonator thickness with frequency characteristics of three successive mode in transverse electric are analyzed. Result shows that artificial dielectric materials with anisotropic permittivity have been able to reduce almost 52% of the resonant frequency of isotropic material. This raises an advantage that reduces the size of microwave device compared to the natural dielectric material. © 2013 IEEE.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Anisotropic permittivity,Artificial dielectric,Frequency characteristic,Helmholtz’s equations,Isotropic materials,Microwave engineering,Transverse electric modes,Transverse electrics[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text]anisotropic permittivity,artificial dielectric material,metamaterial,resonator,transverse electric[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.1109/ICICI-BME.2013.6698532[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]