Enter your keyword

2-s2.0-84896278550

[vc_empty_space][vc_empty_space]

A theoretical model of band-to-band tunneling current in an armchair graphene nanoribbon tunnel field-effect transistor

Putro C.B.S.a, Noor F.A.a, Abdullah M.a, Khairurrijala

a Physics of Electronic Materials Research Division, Institut Teknologi Bandung, Indonesia

[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]Tunneling current in an armchair graphene nanoribbon (AGNR) tunnel field-effect transistor (TFET) was modeled. A linear equation was employed in describing a potential distribution within the AGNR due to its simplicity. A parabolic dispersion and an electron effective mass obtained by approximating kx ≈0 to the parabolic dispersion were applied to AGNR. In order to obtain electron transmittance, electron wavefunctions in the AGNR were based on Airy functions. Assuming ballistic transport occurs within the channel, the obtained transmittance was then applied to calculate the tunneling current by employing the Landauer formula. The calculated results showed that the tunneling current increases with the AGNR width. It was also shown that the tunneling current increases as temperature decreases. In addition, the gate voltage influences the saturation condition of tunneling current in AGNR TFETs. © (2014) Trans Tech Publications, Switzerland.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Airy-wavefunction approach,Electron effective mass,Graphene nano-ribbon,Potential distributions,Tunnel field-effect transistors,Tunnel field-effect transistors (TFET),Tunneling current,Tunneling field-effect transistors[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Airy-wavefunction approach,Graphene nanoribbon,Tunneling current,Tunneling fieldeffect transistor[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.4028/www.scientific.net/AMR.896.371[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]