[vc_empty_space][vc_empty_space]
Development of hydrocracking catalyst support from kaolin of indonesian origin
Rahayu E.S.a,b, Samadhi T.W.b, Subagjob, Gunawan M.L.b
a Chemical Engineering Department, Bandung State Polytechnic, Indonesia
b Bandung Institute of Technology, Indonesia
[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]The global shift of petroleum refinery towards heavier crude oils means an increasing demand of hydrocracking catalysts. This work studies the conversion of a kaolin originating from the Bangka island in Indonesia into a hydrocracking catalyst support consisting of zeolite-Y and amorphous alumina-silica phases. After a beneficiation process the kaolinite phase content is increased from 63.6 to 74.3%-mass. After spray drying, the kaolin is calcined at three temperatures for 2 hours each, producing calcined kaolin phases K700C at 700°C, K1013 at 1013°C, and K1050C at 1050°C. Temperatures of calcination for obtaining calcined kaolin phases is determined based on result of DSC/TGA. Synthesis of zeolite-Y is done by mixing varying proportions of these three calcined kaolin products, and zeolite-Y crystal seeds. These mixtures are aged at room temperature for 11 hours prior to reaction in a hydrothermal condition at 93°C for 15-21 hours. The best calcined kaolin composition is found to be K700C: K1013C: K1050C = 10:85:5 (%-mass), resulting in a zeolite NaY purity of 86-88% as characterized by X-ray diffraction (XRD), average ratio of SiO2/ Al2O3 of 5.35, mean pore diameter of 23.1 Å, specific surface area of 186 m2/g, and a total pore volume of 0.107 mL/g as measured by N2 adsorption. In a parallel manner, a series of amorphous silica-alumina (ASA) synthesis experiments is done to identify the best metakaolin calcination temperature and metakaoline activation pH. These are found to be 527°C and 8.0, respectively, producing an ASA product with a 65%-mass amorphous phase content as estimated by XRD data processing. © (2014) Trans Tech Publications, Switzerland.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Amorphous silica aluminas,Calcination temperature,Hydrocracking catalysts,Hydrothermal conditions,Mean pore diameters,Synthesis experiment,Three temperature,Zeolite-Y[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Amorphous silica-alumina (ASA),Hydrocracking catalyst,Kaolin,Zeolite-y[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.4028/www.scientific.net/AMR.896.532[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]