[vc_empty_space][vc_empty_space]
Preparation of polymers electrolyte membranes for lithium battery from styrofoam waste
Arcana I.M.a, Bundjali B.a, Hariyawati N.K.b
a Inorganic and Physical Chemistry Research Groups, Institut Teknologi Bandung, Indonesia
b Department of Electrical Engineering, Achmad Yani University, Indonesia
[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]Recently, the battery industry has represented one important and growing sector where the use of non-toxic and non-hazardous substitute materials has not rapidly developed. The environmentally friendly polymer electrolyte is required to decrease the risk of environmental pollution caused by toxic materials of battery components. Therefore, in this study was focused on the preparation of the environmentally friendly polymer electrolyte membrane with low cost for lithium-ion battery applications. The preparation of polymer electrolyte membrane was done by casting of polymer solution. The main materials used to prepare polymer electrolyte membranes are sulfonated polystyrene (SPS) obtained from isolation of Styrofoam, hydrolyzed bacterial poly(R-hydroxybutyrate) (PHB), and lithium perchlorate (LiClO4) as an ionic salt. The isolated polystyrene was reacted with acetyl sulfate to form sulfonated polystyrene (SPS). These three main materials were dissolved in an appropriate solvent and mixture until homogenous. The polymer solution was poured into a petri dish, and then their solvent was evaporated. The sulfonation degree of polystyrene (SPS) prepared by reaction with acetyl sulfate at 40oC for 60 minutes was 14.6%. The results showed that the increase LiClO4 content in the membranes, the conductivity of membrane increases, but their mechanical strength decreases and the surface morphology of membranes becomes less uniform and homogenous. © (2014) Trans Tech Publications, Switzerland.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Electrolyte membrane,Environmental pollutions,Lithium perchlorate,Lithium-ion battery,Polyhydroxybutyrate,Polymer electrolyte,Polymer electrolyte membranes,Sulfonated polystyrene[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Lithium battery,Polyhydroxybutyrate,Polymer electrolyte,Sulfonated polystyrene[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.4028/www.scientific.net/AMR.875-877.1529[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]