[vc_empty_space][vc_empty_space]
A theoretical study on electron tunneling current in isotropic high-k dielectric stack-based MOS capacitors with charge trapping
Noor F.A.a, Khairiaha, Abdullah M.a, Khairurrijala
a Physics of Electronic Materials Research Division, Institut Teknologi Bandung, Indonesia
[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]Electron tunneling current in an isotropic metal-oxide-semiconductor (MOS) capacitor with a high-κ dielectric stack has been studied by considering the effect of charge trapping. The transmittance was analytically calculated by employing an Airy-wavefunction approach and including a coupling term between the transverse and longitudinal kinetic energies which is represented by an electron phase velocity in the gate. The transmittance was then applied to obtain tunneling currents in isotropic n+poly-Si/HfSiOxN/trap/SiO2/Si(100) MOS capacitors for different electron gate phase velocities and trap depths and widths. The calculated results show that the transmittance and tunneling current increase as the electron gate velocity decreases. In addition, the increase in the trap depth and width enhances the tunneling current. © (2014) Trans Tech Publications, Switzerland.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Airy-wavefunction approach,Coupling terms,Dielectric stack,Gate velocity,Metal oxide semiconductor,Theoretical study,Trap depth,Tunneling current[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Airy-wavefunction approach,Charge trapping,Electron gate velocity,Tunneling current[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.4028/www.scientific.net/AMR.896.363[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]