Enter your keyword

2-s2.0-84896507594

[vc_empty_space][vc_empty_space]

Removal of inorganic contaminants in sugar refining process using electrodeionization

Khoiruddina, Widiasa I.N.b, Wenten I.G.a

a Department of Chemical Engineering, ITB, Indonesia
b Department of Chemical Engineering, Diponegoro University, Jl. Prof. Soedarto, SH. Kampus Tembalang, Indonesia

[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]This paper reports performance of an electrodeionization (EDI) system during removal of inorganic contaminants in sugar refining process. Diluate compartments of EDI stack were filled with mixed ion-exchange resins (strong acid cation-exchange and strong base type I anion resins). Experiments were then conducted at both batch and continuous operation mode. The results showed that EDI is able to remove inorganic contaminants as well as colour body from sugar solutions. At relatively high sugar concentration, significant decrease in ions removal is observed. The increase of current density and applied voltage had little impact on ions removal and lead to current efficiency and pH reduction. The colour removal may be associated to complex bond (organic-inorganic) breakage due to water dissociation inside the diluate compartment. © 2014 Elsevier Ltd. All rights reserved.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Cation exchanges,Continuous operation,Current efficiency,Electro-deionization,Inorganic contaminants,Organic-inorganic,Sugar concentration,Water dissociation[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Electrodeionization,Ion-exchange membrane,Ion-exchange resin,Sugar refining[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.1016/j.jfoodeng.2014.02.015[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]