Enter your keyword

2-s2.0-84897602326

[vc_empty_space][vc_empty_space]

Public transport demand estimation by calibrating the combined trip distribution-mode choice (TDMC) model from passenger counts

Tamin O.Z.a, Sulistyorini R.a

a Department of Civil Engineering, Institute Technology Bandung (ITB), Indonesia

[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]The conventional method to estimate the O-D matrices require very large surveys and very expensive. The need for inexpensive methods, which require low-cost data, generally called as ‘unconventional method’. The development of techniques for calibrating the trip distribution models from traffic volumes to obtain the O-D matrices is well advanced. However, the previous research still in a burden condition of “All or Nothing” which is not realistic for some congested road networks in urban area. So, the main objective and contribution of this research is the estimation of origin-destination matrices by calibrating the combined gravity with multinomial logit under equilibrium assignment. The estimation methods, namely: Non-Linear-Least-Squares (NLLS) will be used to estimate the parameters of transport demand models. The combined model and its calibration method have been implemented. The model was able to obtain the calibrated parameters which can then be used for forecasting purposes. The advantageous and the applicability of the model are given.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Calibration method,Conventional methods,Equilibrium assignment,Estimation methods,Forecasting purpose,Multinomial Logit,Origin-destination matrix,Trip distribution[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]