Enter your keyword

2-s2.0-84897631890

[vc_empty_space][vc_empty_space]

Mode shift travel demand management strategy for congestion and emission for developing countries (Jakarta case)

Tamin O.Z.a, Prayudyanto M.N.a

a Department of Civil Engineering, Institute Technology Bandung (ITB), Indonesia

[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]The influences of motorization and urbanization in Indonesia, later followed by suburbanization in many metropolitan areas, have been of interest to transportation and urban researchers for the last few decades. Mode shift is one the Travel Demand Management (TDM) strategies, which has a powerful technique due to their large variation, consisting car occupancy, road pricing, public transport, intelligent transport system, land use arrangement, etc. The estimation of modal split and their performance for 5 TDM strategies is presented, ranging from development of Busway, School Buses, Jakarta Staggered Working Hours and Road Pricing schemes. All those strategies would be elaborated and will be compared with the current vehicle occupancy “3-in-1″ policy. The paper will mention in great detail in selecting the most appropriate strategies which include transportation, financing, and environmental aspects. However, some analysis should be made to encounter the value on non-transport quantitative measures, and intangible qualitative parameters as well.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Environmental aspects,Intelligent transport systems,Metropolitan area,Public transport,Qualitative parameters,Quantitative measures,Travel demand management,Vehicle occupancies[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]