[vc_empty_space][vc_empty_space]
Reduced order bilinear time invariant systems using singular perturbation
Solikhatun S.a,b, Saragih R.a, Joelianto E.a
a Industrial and Financial Mathematics Research Group, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Indonesia
b Department of Mathematics, Faculty of Mathematics and Natural Sciences, Gadjah Mada University, Indonesia
[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]Model order reduction of bilinear time invariant systems based on K œ norm or least upper bound of difference equation is presented in this paper. The difference equation of the bilinear time invariant system is presentedas error transfer function between full order and reduced order of the bilinear time invariant system. The proposed method is graphically easier than using alteration of Hankel singular values. The least upper bound of the error transfer function and Kœ norm of difference bilinear system are a function of controllability gramian. In this paper, the reduced bilinear system is carried out by using singular perturbation method. The numerical simulation results are given to clarify the proposed method for selection of reduced order bilinear time invariant system. © 2013 IEEE.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Bilinear system,Controllability and observabilities,Controllability gramian,Hankel singular values,Singular perturbation method,Singular perturbations,Time invariant systems,Upper-bound of the error[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text]bilinear time invariant system,controllability and observability gramian,reduced order bilinear system,singular perturbation[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.1109/ICA.2013.6734052[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]