[vc_empty_space][vc_empty_space]
Petrotoga japonica sp. nov., a thermophilic, fermentative bacterium isolated from Yabase Oilfield in Japan
Purwasena I.A.a, Sugai Y.b, Sasaki K.b
a School of Life Science and Technology, Bandung Institute of Technology, Indonesia
b Department of Earth Resources Engineering, Faculty of Engineering, Kyushu University, Japan
[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]A gram-negative, motile, fermentative, thermophilic bacterium, designated AR80T, was isolated from a high-temperature oil reservoir in Yabase Oilfield in Akita, Japan. Cells were rod-shaped, motile by means of polar flagella, and formed circular, convex, white colonies. The strain grew at 40-65 °C (optimum 60 °C), 0.5-9 % (w/v) NaCl (optimum 0.5-1 %), pH 6-9 (optimum pH 7.5), and elemental sulfur or thiosulfate serves as terminal electron acceptor. Phylogenetic analysis of 16S rRNA gene sequences indicated that strain AR80T belonged to the genus Petrotoga and shared approximately 94.5 % sequence similarity with the type species of this genus. The G + C content of genomic DNA was 32.4 mol% while the value of DNA-DNA hybridization between the closest relative species Petrotoga miotherma and AR80T was 58.1 %. The major cellular fatty acids of strain AR80 T consisted of 18:1 w9c, 16:0, and 16:1 w9c. Based on genetic and phenotypic properties, strain AR80T was different with other identified Petrotoga species and represents as a novel species, for which the name Petrotoga japonica sp. nov. is proposed. The type strain is AR80 T (=NBRC 108752T = KCTC 15103T = HUT 8122 T). © 2014 Springer-Verlag.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Anaerobe fermentative,Novel bacteria,Oilfield,Petrotoga japonica,Thermophilic,Thermotogales[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text]Acknowledgments We gratefully acknowledge the financial support of global COe Kyushu University. The authors are also grateful to the InPeX Corporation of Japan for their cooperation in providing the brine samples. The authors thank Dr. K. Fujiwara for his advice about genetic techniques. We also appreciate the technical support provided by the research Support Center, graduate School of Medical Sciences, Kyushu University for DnA sequencing analysis.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.1007/s00203-014-0972-4[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]