Enter your keyword

2-s2.0-84901290714

[vc_empty_space][vc_empty_space]

DSP implementation of combined FIR-functional link neural network for active noise control

Yacoub R.R.a, Bambang R.T.a, Harsoyo A.a, Sarwono J.a

a School of Electrical Engineering and Informatics, Bandung Institute of Technology, Indonesia

[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]This paper presents theoretical and experimental study of active noise control (ANC) system based on the combination of finite-impulse response filter and functional-link neural network (CFFLNN). The combined structure is used in an effort not only to compensate for the nonlinear phenomena that often appear in the real-world ANC applications, but also to improve the attenuation performance. In this paper, we propose the development of adaptive learning algorithm, both for an identification of ANC secondary-path and for the active noise control process. Implementation of the active noise control process and proposed algorithm on digital signal processors DSP TMS320C6713 DSK is performed for real-time experiments in ANC system. Experimental results of CFFLNN-based ANC applied to the duct noise system show that the attenuation performance can be improved by introducing the FIR subsection, and that FLNN subsection can effectively compensate the nonlinearity in the ANC system. © 2014 by IJAI (CESER PUBLICATIONS).[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text]ANC,CFFLNN,Learning algorithm computing,Nonlinear phenomena[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]