[vc_empty_space][vc_empty_space]
Design, kinematic modeling, and implementation of autonomous fish robot for underwater sensing
Ashar A.U.a, Jamaludin M.A.a, Zakiy M.F.a, Syaichu-Rohman A.a
a School of Electrical Engineering and Informatics, Institut Teknologi Bandung, Indonesia
[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]Mechatronics design of fish robot and kinematic modeling for its movements including straight, turn, and up-down movements have been successfully implemented. The fish robot is designed with two joints to adopt the movement of carangiform fish which creates motion and controls its movements by using 1/3 of its body. Two methods for producing up-down motion are investigated, namely the pectoral fin and weight moving method and it is found that for this particular robot pectoral fin method is more effective. In addition to kinematic modeling for its movement, the fish robot is also equipped with navigation sensor such that infrared and Inertial Navigation System (INS) so that it can move autonomously. Main navigation parameters such as yaw, pitch, roll, and heading have been successfully monitored for evaluation of positions and movements. The fish robot is also equipped with sensor to obtain data related to water quality and wifi for data transmission. Thus the robot is highly potential for effective and efficient underwater sensing tasks. © 2013 IEEE.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Carangiform,Fish robots,Inertial navigation systems (INS),Kinematic model,Mechatronics designs,Navigation parameters,Navigation sensors,Pectoral fin[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text]carangiform fish,fish robot,inertial navigation system,kinematic modeling,pectoral fin method[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.1109/rICT-ICeVT.2013.6741557[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]