[vc_empty_space][vc_empty_space]
Analysis of aerosol, cloud and precipitation interaction behavior using predator-prey model
Sulistyowati R.a,b, Musafar K L.M.a,c, Srigutomo W.a, Kurniadi R.a
a Physics Department, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Indonesia
b Physics Department, Faculty of Teacher Training and Science Education, Universitas PGRI Palembang, Indonesia
c Division of Earth and Space Electromagnetism, Space Sciences Center, National Institute of Aeronautics and Space, Indonesia
[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]Aerosol-cloud-precipitation interaction as a complex system can be explained in a predator-prey model. Aerosol conducts as a modulator in cloud predation by precipitation which serves as predator. The coupled dynamical equations of the model are solved using time-delay finite difference method. It is qualitatively gained that [1]aerosol concentration change (N0) will affect formation of cloud droplets concentration (Nd) which is needed to yield precipitation (R), [2] precipitation rate will cause the cloud depth (H) decreased, vice versa, precipitation rate reduction will cause the cloud depth (H) stand longer. Validity test to this model is done by comparing the model calculation results with those obtained from field observation. © 2014 AIP Publishing LLC.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Aerosol concentration,Dynamical equation,Field observations,Interaction behavior,Model calculations,Precipitation rates,Predator-prey modeling,Validity tests[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text]aerosol,cloud depth,precipitation,predator-prey model,time-delay[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.1063/1.4868823[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]