[vc_empty_space][vc_empty_space]
The SWASH model for soliton splitting due to decreasing depth
Subasita N.a, Latief H.a, Pudjaprasetya S.R.a
a Department of Oceanography, Faculty of Earth Science and Technology, Institut Teknologi Bandung, Indonesia
[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]A solitary wave is a nonlinear wave that travels undisturbed in shape and velocity as a result of a balance between dispersion and nonlinearity. According to the inverse scattering theory of KdV, a solitary wave will split into N-soliton due to decreasing depth. This phenomenon is simulated using the non-hydrostatic model SWASH. Simulations are conducted for initial amplitude of 2 m with four types of slope: steep, moderately steep, mild, and linear slope. The initial depth decreases from 10 m to ∼6.14 m which make solitary wave split into two solitons. Simulations show that the solitary wave splits into two solitons for steep, moderately steep, and mild bottom slope, where as for linear slope the initial solitary wave will evolve into a solitary wave with a tail. From the simulation over a moderately steep bottom, amplitudes of the separated soliton admit a nearly quadratic ratio which is comparable with those resulting from the inverse scattering theory. © 2014 AIP Publishing LLC.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Inverse scattering theory,KdV equations,Nonhydrostatic model,Nonlinear waves[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text]KdV Equation,non-hydrostatic model SWASH,Solitary Wave and N-soliton[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.1063/1.4868771[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]