Enter your keyword

2-s2.0-84903740153

[vc_empty_space][vc_empty_space]

Enhanced energy confinement induced by metallic coating of central rod in square array photonic crystal of dielectric rods for TM light

Suryadharma R.N.S.a, Iskandar A.A.a, Tjia M.O.a

a Physics of Magnetism and Photonics Research Group, Department of Physics, Institut Teknologi Bandung, Indonesia

[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]We study the effects of a defect created by metallic coating of the central rod in a square lattice of dielectric rods for TM polarization lights. A calculation using the Plane Wave Expansion Method (PWE) in the supercell model shows that the photonic band structure and field distribution in the defect area varies with changing metallic layer thickness. The optimal energy localization is explored by varying the thickness of the metal layer. Enhancement of the energy confinement is described by the narrower spatial distribution profile of the energy with thicker metal coating. A more quantitative description, given in terms of confinement quality (CQ) defined by the normalized integrated intensity in the central rod, exhibits monotonous increase of CQ with growing metal layer thickness. The highest CQ value achieved is around 80% for a 3 × 3 supercell, which is considerably higher than the 44% optimal value achievable in the same dielectric PC structure with a defective central rod. Further calculation using the Extended Plane Wave Expansion Method for determining the imaginary part of the Bloch wave vector (k ) im shows increasing kim with increasing metal coating thickness. The following analysis explains and corroborates the enhanced energy confinement effect. © 2014 IOP Publishing Ltd.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Coating thickness,Energy confinement,Field distribution,Integrated intensities,Photonic band structures,Photonic crystal cavities,Plane wave expansion method,Quantitative description[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text]photonic band structure,photonic crystal cavities,photonic crystals[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.1088/2040-8978/16/7/075102[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]