Enter your keyword

2-s2.0-84905388567

[vc_empty_space][vc_empty_space]

Assessment of the effects of climate and land cover changes on river discharge and sediment yield, and an adaptive spatial planning in the Jakarta region

Poerbandonoa, Julian M.M.b, Ward P.J.

a Institut Teknologi Bandung, Indonesia
b Institut für Geographie, Lehrstuhl für Geoinformatik, Geohydrologie und Modellierung, Friedrich-Schiller-Universität, Jena, Germany
c Institute for Environmental Studies (IVM), VU University, Amsterdam, Netherlands

[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]In Jakarta, climate change has been detected through rising air temperatures, increased intensity of rainfall in the wet season, and sea level rise. The coupling of such changes with local anthropogenic driven modifications in the environmental setting could contribute to an increased probability of flooding, due to increase in both extreme river discharge and sedimentation (as a result of erosion in the watersheds above Jakarta and as indicated by sediment yield in the downstream area). In order to respond to the observed and projected changes in river discharge and sediment yield, and their secondary impacts, adaptation strategies are required. A possible adaptation strategy is through policy making in the field of spatial planning. For example, in Indonesia, presidential regulation number 54 year 2008 (Peraturan Presiden Nomor 54 Tahun 2008-Perpres 54/2008) was issued as a reference for the implementation of water and soil conservation. This paper assesses the impact of climate and land cover change on river discharge and sediment yield, as well as the effects of Perpres 54/2008 on that river discharge and sediment yield. The spatial water balance model Spatial Tools for River Basins and Environmental and Analysis of Management Option was used for the runoff computations, whilst the Spatial Decision Assistance of Watershed Sedimentation model was used to simulate erosion, Sediment Delivery Ratio, and sediment yield. The computation period is from January 1901 to December 2005, at the scale of the following watersheds: Ciujung, Cisadane, Ciliwung, and Citarum. During the twentieth century, computed average discharge in the downstream area (near Jakarta) increased between 2.5 and 35 m3/s/month, and sediment yield increased between 1 × 103 and 42 × 103 tons/year. These changes were caused by changes in both land cover and climate, with the former playing a stronger role. Based on a computation under a theoretical full implementation of the spatial plan proposed by Perpres 54/2008, river discharge would decrease by up to 5 % in the Ciliwung watershed and 26 % in the Cisadane watershed. The implementation of Perpres 54/2008 could also decrease the sediment yield, by up to 61 and 22 % in the Ciliwung and Cisadane watersheds, respectively. These findings show that the implementation of the spatial plan of Perpres 54/2008 could significantly improve watershed response to runoff and erosion. This study may serve as a tool for assessing the reduction in climate change impacts and evaluating the role of spatial planning for adaptation strategies. © 2014 Springer Science+Business Media Dordrecht.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Climate change,Jakarta,River discharge,Sediment yield,Spatial planning[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text]Acknowledgments We thank the two anonymous reviewers for their comments on an earlier version of this manuscript. This research was funded by a SPIN grant (09-MP-10) from the Royal Netherlands Academy of Arts and Sciences (KNAW), and project HSINT02a of the Dutch research programme Knowledge for Climate and Delta Alliance. Philip J. Ward was also funded by a VENI grant from the Netherlands Organisation for Scientific Research (NWO).[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.1007/s11069-014-1083-x[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]