[vc_empty_space][vc_empty_space]
Fe3O4/Zeolite nanocomposites synthesized by microwave assisted coprecipitation and its performance in reducing viscosity of heavy oil
Iskandar F.a, Fitriani P.a, Merissa S.a, Mukti R.R.a, Khairurrijala, Abdullah M.a
a Physics of Electronic Materials Research Division, Institut Teknologi Bandung, Indonesia
[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]Fe3O4/Zeolite nanocomposites have been synthesized via microwave assisted coprecipitation method and show to be efficient in reducing viscosity of heavy oil compared to other Fe3O 4/Zeolite nanocomposites prepared by conventional method. The following precursors such as FeCl3·6H2O, FeSO 4·7H2O, NH4OH, and natural zeolite of heulandite type were used in the sample preparation. In this study, the effect of Fe3O4 composition in the composite and microwave time heating were investigated. Fe3O4/Zeolite nanocomposites were then characterized to study the influence on crystal structures, morphology and physicochemical properties. The characterization techniques include X-ray diffraction (XRD), scanning electron microscopy (SEM) and nitrogen physisorption. The results show that by increasing the microwave heating time, the degree of nanocomposite intergrowth can be enhanced. The nanocomposite was tested in catalytic aquathermolysis of heavy oil at 200°C for 6 h and the Fe3O4/zeolite of 1 to 4 ratios performed the highest viscosity reduction of heavy oil reaching 92%. © 2014 AIP Publishing LLC.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Aquathermolysis,Characterization techniques,Conventional methods,Coprecipitation method,Heavy oil,Microwave assisted,Nitrogen physisorption,Physicochemical property[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Aquathermolysis,Heavy oil,Microwave assisted coprecipitation,Nanocomposite,Zeolite[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.1063/1.4866746[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]