[vc_empty_space][vc_empty_space]
Articulatory controllable speech modification based on statistical feature mapping with Gaussian Mixture Models
Tobing P.L.a,b, Toda T.a, Neubig G.a, Sakti S.a, Nakamura S.a, Purwarianti A.b
a Graduate School of Information Science, Nara Institute of Science and Technology, Japan
b STEI, Institut Teknologi Bandung, Indonesia
[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]Copyright © 2014 ISCA.This paper presents a novel speech modification method capable of controlling unobservable articulatory parameters based on a statistical feature mapping technique with Gaussian Mixture Models (GMMs). In previous work [1], the GMM-based statistical feature mapping was successfully applied to acoustic-to-articulatory inversion mapping and articulatory-to-acoustic production mapping separately. In this paper, these two mapping frameworks are integrated to a unified framework to develop a novel speech modification system. The proposed system sequentially performs the inversion and the production mapping, making it possible to modify phonemic sounds of an input speech signal by intuitively manipulating articulatory parameters estimated from the input speech signal. We also propose a manipulation method to automatically compensate for unmodified articulatory movements considering inter-dimensional correlation of the articulatory parameters. The proposed system is implemented for a single English speaker and its effectiveness is evaluated experimentally. The experimental results demonstrate that the proposed system is capable of modifying phonemic sounds by manipulating the estimated articulatory movements and higher speech quality is achieved by considering the inter-dimensional correlation in the manipulation.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Articulatory inversion,Gaussian Mixture Model,Gaussian mixture model (GMMs),Manipulation methods,Modification methods,Parameters estimated,Statistical features,Unified framework[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Acoustic-to-articulatory inversion mapping,Articulatory-to-acoustic production mapping,Gaussian mixture model,Inter-dimensional correlation,Speech modification[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]