Enter your keyword

2-s2.0-84911163616

[vc_empty_space][vc_empty_space]

TM wave mode analysis of circular dielectric resonator with anisotropic permittivity

Ludiyati H.a,b, Suksmono A.B.a, Munir A.a

a Radio Telecommunication and Microwave Laboratory, School of Electrical Engineering and Informatics, Institut Teknologi Bandung, Indonesia
b Department of Electrical, Politeknik Negeri Bandung, Indonesia

[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]This paper presents the theoretical analysis of transverse magnetic (TM) wave mode for circular dielectric resonator with anisotropic permittivity. The analysis which is emphasized on its resonant frequency is required to investigate specific properties of resonator in TM wave mode which are useful for microwave application. By introducing the anisotropic permittivity, the resonator is expected to have the property with unique characteristic compared to the conventional one. To determine the resonant frequency of resonator for TM wave mode, Maxwell’s equations with proper boundary condition are applied for circular waveguide that encapsulates an anisotropic circular dielectric resonator. The anisotropic permittivity is established by assuming the different values of relative permittivity in each axis of cylindrical coordinate, i.e., ερ, εφ and εz. The analysis result shows that the circular dielectric resonator with anisotropic permittivity in z axis, i.e., propagation direction, has significantly changed the resonant frequencies of TM wave mode which can be applicable for resonance mode selection.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Anisotropic permittivity,Cylindrical coordinates,Maxwell’s equations,Microwave applications,Propagation direction,Relative permittivity,Specific properties,Transverse magnetic waves[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]