[vc_empty_space][vc_empty_space]
Non simultaneous-conjugate-match technique for S-band low noise amplifier design
Munir A.a, Taryana Y.a,b
a Radio Telecommunication and Microwave Laboratory, School of Electrical Engineering and Informatics, Institut Teknologi Bandung, Indonesia
b Research Center for Electronics and Telecommunication, Indonesian Institute of Sciences, Indonesia
[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]The design of 2-stage low noise amplifier (LNA) working at S-band frequency is proposed by using non simultaneous-conjugate-match technique. Implementation of the technique is motivated by the circumstance that the gain of LNA designed by the familiar technique, i.e. simultaneous-conjugate-match is almost followed by arise of values in noise figure (NF) and voltage standing wave ratio (VSWR). In the design process, the ADS software is applied to determine the desired trade-off value between LNA parameters such as gain and VSWR. The 2-stage LNA which is deployed on an Arlon DiClad527 applies BJT transistors of BFP420. To achieve the impedance matching condition, microstrip lines are employed at the input and output ports. From the experimental characterization, it shows that the prototype of 2-stage LNA produces the gain of 24.32 dB at 3 GHz which is 4.56 dB lower than the simulated result.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text]BJT transistors,Experimental characterization,Input and outputs,Low noise amplifier designs,Non-simultaneous,S-Band frequencies,Simulated results,Voltage standing-wave ratio[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]