Enter your keyword

2-s2.0-84912121688

[vc_empty_space][vc_empty_space]

Optimal portfolio in discrete-time under HARA utility function

Rizal N.A.a,b, Surya B.A.a, Wiryono S.K.a

a School of Business and Management, Institut Teknologi Bandung, Bandung, Indonesia
b Telkom Economic and Business School, Telkom University, Bandung, Indonesia

[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]© 2014 IEEE.In this study we are going to discuss about optimal dynamic portfolio strategy given the new information of the market to the investor. The objective is to find the optimal strategy that maximizes the expected total hyperbolic absolute risk aversion (HARA)-utility of investor weight portfolio over finite life time. There are two assets that take place in to the dynamic portfolio model, risky asset and risk-free bond with constant interest rate. The underlying stock price is obtained under binomial process of Markov chain approximation of diffusion process. The stochastic dynamic programming is used as the approach to solve the problem. In contrast to the continuous-time counterpart, the optimal trading strategies are found to be time-dependent in recursive manners. Sufficient conditions for short selling are given in terms of physical and martingale probabilities of the stock price.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Constant interest rate,Diffusion process,Dynamic portfolios,Markov chain approximations,Optimal portfolios,Optimal strategies,Optimal trading strategy,Stochastic dynamic programming[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.1109/ISTMET.2014.6936546[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]