[vc_empty_space][vc_empty_space]
Crashworthiness analysis of multi-cell prismatic structures
a Lightweight Structures Research Group, Faculty of Mechanical and Aerospace Engineering, Institut Teknologi Bandung, Bandung, 40132, Indonesia
[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]© 2014 Elsevier Ltd. All rights reserved.This paper presents a numerical and experimental study of several configurations of multi-cell columns compared to single-walled and double-walled columns subjected to dynamic axial impact forces. The impact of the columns was numerically analysed using FEM and also verified by experimental testing. The effect of the column mass and thickness of the multi-cell columns compared to single- and double-walled columns was also studied. The results showed that, by analysing a group of columns with the same thickness and weight, the energy absorption efficiency can be significantly improved by introducing internal ribs to the double-walled columns. The results showed that the crushing force of the middle ribs (MR) multi-cell columns was the highest, followed by the corner ribs (CR) multi-cell columns, the double-walled (DW) columns and the single-walled (SW) columns, respectively.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Axial crushing,Double-walled,Impact,Multicell,Single-walled,Thin-walled columns[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Double-walled,Dynamic axial crushing,Impact,Multi-cell,Single-walled,Thin-walled column[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text]This work was carried out with the financial support from Competence Grant Fiscal Year 2009–2011 , the Competitive Grant Fiscal Year 2009 , the International Research Collaboration and Scientific Publication Grant Fiscal Year 2012–2013 , and the Decentralisation Grant Year 2013 , Directorate of Research and Community Development – Directorate General of Higher Education – Ministry of Education and Culture, Republic of Indonesia , and the Research Group Grant Fiscal Year 2011–2013 , Institut Teknologi Bandung , which are greatly acknowledged. The authors also wish to express their deep gratitude to Professor Hoon Huh from the Computational Solid Mechanics and Design Laboratory – Korea Advanced Institute of Science and Technology (CSMD Laboratory – KAIST), who facilitated the static and dynamic tensile test as well as the impact experiments.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.1016/j.ijimpeng.2014.11.011[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]