[vc_empty_space][vc_empty_space]
Impact behavior of square crash box structures having holes at corners
Nghia N.C.a, Dirgantara T.a, Santosa S.P.b, Jusuf A.a, Putra I.S.a
a Lightweight Structures Research Group, Indonesia
b Lightweight Structures Laboratory, Engineering Center for Industry Institut Teknologi Bandung, Bandung, 40132, Indonesia
[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]© (2014) Trans Tech Publications, Switzerland.In this paper, an analytical prediction and numerical simulation of the behavior of square crash box structures having hole at corners on dynamic axial crushing are studied. The focus of the present theoretical prediction is to calculate the mean crushing force and maximum crushing force during the folding process subjected to axial impact loading. Then, the effect of hole size to the crushing response of square crash box structures was also evaluated. For validation, an explicit nonlinear commercial finite element code LS-DYNA was used to predict the response of the structures subjected to axial crushing. It was found that results of numerical method and theoretical prediction were in good agreement. The results showed that, by inserting holes at corners, the folding can be controlled to be always started from the hole, and peak crush load on the first fold can be reduced significantly. Meanwhile, the decreasing of mean crushing force is insignificant compared to the one without holes. Hence, the characteristic of impact energy absorption in a progressive buckling can be improved, the damage in passenger compartment can be minimized, and the deceleration level can be kept in safe level to prevent injury of the passenger.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Analytical predictions,Axial crushing,Commercial finite element codes,Cut-out,Impact,Impact energy absorption,Passenger compartment,Progressive buckling[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Axial crushing,Crashworthiness,Effects of Cut-outs,Impact,Thin-walled structure[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.4028/www.scientific.net/AMM.660.613[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]