[vc_empty_space][vc_empty_space]
On active surge control of compression systems via characteristic linearization and model nonlinearity cancellation
Simamora Y.S.M.a, Simamora Y.S.M.a, Tjokronegoro H.A.a, Tjokronegoro H.A.a, Leksono E.a
a Institut Teknologi Bandung, Bandung, 40132, Indonesia
b Politeknik Purbaya, Talang, Kabupaten Tegal, 52193, Indonesia
[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]© 2014 Published by ITB Journal Publisher.A simple approach of active surge control to compression systems is presented. Specifically, nonlinear components of the pressure ratio and rotating speed states of the Moore-Greitzer model are transferred into the input vectors. Subsequently, the compressor characteristic is linearized into two modes, which describe the stable region and the unstable region respectively. As a result, the system’s state and input matrices both appear linear, to which linear realization and analysis are applicable. A linear quadratic regulator plus integrator is then chosen as closed-loop controller. By simulation it was shown that the modified model and characteristics can describe surge behavior, while the closed-loop controller can stabilize the system in the unstable operating region. The last mentioned was achieved when massflow was 5.38 per cent less than the surge point.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Compression system,Linear quadratic regulator,Non-linear model,Nonlinearity cancellation,Surge controls[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Active surge control,Compression systems,Linear quadratic regulator,Nonlinear model,Nonlinearity cancellation[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.5614/j.eng.technol.sci.2014.46.3.8[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]