[vc_empty_space][vc_empty_space]
3D artificial material characterization using rectangular waveguide
Wibowo D.P.a, Munir A.a
a Radio Telecommunication and Microwave Laboratory, School of Electrical Engineering and Infomatics, Institut Teknologi, Bandung, Indonesia
[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]© 2014 IEEE.Since the artificial materials recently have been widely applied for various applications, such as resonators, filters, transmission lines, and antennas, it is necessary to explore how to extract the properties of materials, i.e. permittivity and permeability. Information about the materials properties is very important for the user before materials utilization. In this paper, a rectangular waveguide-based characterization to extract the property of three-dimension (3D) artificial material is numerically investigated. The proposed 3D artificial material is constructed from conventional materials with some additional treatment to obtain unusual characteristics. The material properties which are focused on relative permittivity is extracted from scattering parameters. The rectangular waveguide is used as a tool to obtain scattering parameter of proposed material. From the results, it shows that the relative permittivity of proposed 3D artificial material is strongly influenced by the variation of unit cell and proportionally rises up to the number and dimension of unit cell. Moreover, the relative permittivity also increases if the orientation of unit cell is parallel to the electric field of incoming wave.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Additional treatment,Artificial material,Conventional materials,Relative permittivity,Three dimensions,Unit cells[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Artificial materials,characterization,rectangular waveguide,relative permittivity,scattering parameters[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.1109/ICITEED.2014.7007918[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]