[vc_empty_space][vc_empty_space]
Direct in situ activation of Ag 0 nanoparticles in synthesis of Ag/TiO 2 and its photoactivity
Jaafar N.F.a, Jalil A.A.a, Triwahyono S.a, Efendi J.b, Mukti R.R.c, Jusoh R.a, Jusoh N.W.C.a, Karim A.H.a, Salleh N.F.M.a, Suendo V.c
a Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, Johor Bahru, Johor, 81310, Malaysia
b Department of Chemistry, Universitas Negeri Padang, Padang, West-Sumatera, Indonesia
c Division of Inorganic and Physical Chemistry, Faculty of Mathematics and Natural Science, Institut Teknologi Bandung, Bandung, 40132, Indonesia
[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]© 2015 Elsevier B.V. All rights reserved. Metallic Ag nanoparticles (Ag 0 ) were successfully activated using a direct in situ electrochemical method before being supported on TiO 2 . Catalytic testing showed that 5 wt% Ag-TiO 2 gave the highest photodegradation (94%) of 50 mg L -1 2-chlorophenol (2-CP) at pH 5 using 0.375 g L -1 catalyst within 6 h, while under similar conditions, 1 wt% and 10 wt% Ag-TiO 2 only gave 75% and 78% degradation, respectively. Characterization results illustrated that the photoactivity was affected by the amount of Ag 0 and oxygen vacancies which act as an electrons trap to enhance the electron-hole separation. While, the AgOTi bonds formation reduced the photoactivity. The degradation followed a pseudo-first order Langmuir-Hinshelwood model where adsorption was the controlling step. Study on the effect of scavengers showed that the hole (H + ) and hydroxyl radical (OH) play important roles in the photodegradation. The regenerated photocatalyst was still stable after five cycling runs.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text]2-chlorophenols,Ag-TiO2,Electrochemical,ELectrochemical methods,Electron hole pairs,Electron-hole separation,Langmuir-Hinshelwood models,Pseudo-first-order[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text]2-Chlorophenol,Ag-TiO 2 catalyst,Electrochemical,Electron-hole pairs separation,Photodegradation[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text]The authors are grateful for the financial support by the Fundamental Research Grant Scheme ( 4F161 ), awards of MyPhD Scholarship (Nur Farhana Jaafar) from the Ministry of Higher Education Malaysia and to the Hitachi Scholarship Foundation for their support. Appendix A[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.1016/j.apsusc.2015.02.106[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]