[vc_empty_space][vc_empty_space]
A hydrodynamic model for dispersive waves generated by bottom motion
Pudjaprasetya S.R.a, Tjandra S.S.b
a Industrial and Financial Mathematics Research Group, Bandung Institute of Technology, Bandung, 40132, Indonesia
b Industrial Engineering, Parahyangan Catholic University, Bandung, 40141, Indonesia
[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]© Springer International Publishing Switzerland 2014.A numerical scheme based on the staggered finite volume method is presented at the aim of simulating surface waves generated by a bottom motion. Here, we address the 2D Euler equations in which the vertical domain is resolved only by one layer. Under the assumption of horizontally dominant flow, we enhance the conservative scheme for shallow water equations to include bottom motion and to account take into the hydrodynamic pressure term. The resulting scheme can simulate free surface wave generated by downward motion of a bed-section. The result demonstrates the evolution of a negative wave displacement followed by a dispersive wave train. Our numerical results show good agreement with results from the KdV model and experiment by Hammack [3].[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text]2D Euler equations,Conservative schemes,Free-surface wave,Hydrodynamic model,Hydrodynamic pressure,Numerical results,Numerical scheme,Shallow water equations[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text]Financial support from Riset Desentralisasi ITB 2014 and DIKTI scholarship are greatly acknowledged.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.1007/978-3-319-05684-5_44[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]