Enter your keyword

2-s2.0-84929334813

[vc_empty_space][vc_empty_space]

Characteristic subspaces and hyperinvariant frames

Astuti P.a, Wimmer H.K.b

a Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Bandung, 40132, Indonesia
b Mathematisches Institut, Universität Würzburg, Würzburg, 97074, Germany

[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]© 2015 Elsevier Inc. All rights reserved.Let f be an endomorphism of a finite dimensional vector space V over a field K. An f-invariant subspace is called hyperinvariant (respectively characteristic) if it is invariant under all endomorphisms (respectively automorphisms) that commute with f. We assume |K| = 2, since all characteristic subspaces are hyperinvariant if |K| > 2. The hyperinvariant hull Wh of a subspace W of V is defined to be the smallest hyperinvariant subspace of V that contains W, the hyperinvariant kernel WH of W is the largest hyperinvariant subspace of V that is contained in W, and the pair (WH, Wh) is the hyperinvariant frame of W. In this paper we study hyperinvariant frames of characteristic non-hyperinvariant subspaces W. We show that all invariant subspaces in the interval [WH, Wh] are characteristic. We use this result for the construction of characteristic non-hyperinvariant subspaces.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Characteristic hull,Characteristic subspaces,Exponent,Fully invariant subgroup,Height,Hyperinvariant frame,Hyperinvariant hull,Hyperinvariant subspaces,Invariant subspace,Lattice intervals[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Characteristic hull,Characteristic subspaces,Exponent,Fully invariant subgroups,Height,Hyperinvariant frame,Hyperinvariant hull,Hyperinvariant subspaces,Invariant subspaces,Lattice intervals[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.1016/j.laa.2015.05.011[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]