Enter your keyword

2-s2.0-84930400514

[vc_empty_space][vc_empty_space]

Spectral mixture analysis (SMA) of Landsat imagery for land cover study of highly degraded peatland in Indonesia

Sakti A.D.a, Tsuyuki S.

a Center for Remote Sensing, Bandung Institute of Technology, Bandung, Indonesia
b Global Forest Environmental Studies, Graduate School of Agricultural and Life Sciences, University of Tokyo, Japan

[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]Indonesian peatland, one of the world’s largest tropical peatlands, is facing immense anthropogenic pressures such as illegal logging, degradation and also peat fires, especially in fertile peatlands. However, there still is a lack of appropriate tools to assess peatland land cover change. By taking Pelalawan district located in Sumatra Island, this study determines number of land cover endmembers that can be detected and mapped using new generation of Landsat 8 OLI in order to develop highquality burned peat fraction images. Two different image transformations, i.e. Principle Component Analysis (PCA), Minimum Noise Fraction (MNF) and two different scatterplot analyses, i.e. global and local, were tested and their accuracy results were compared. Analysis of image dimensionality was reduced by using PCA. Pixel Purity Index (PPI), formed by using MNF, was used to identify pure pixel. Four endmembers consisting of two types of soil (peat soil and dry soil) and two types of vegetation (peat vegetation and dry vegetation) were identified according to the scatterplot and their associated interpretations were obtained from the Pelalawan Fraction model. The results showed that local scatterplot analysis without PPI masking can detect high accuracy burned peat endmember and reduces RMSE value of fraction image to improve classification accuracy.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Burned peat fraction,Endmember analysis,Peatland,Pelalawan district,Spectral mixture analysis[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Burned peat fraction,Endmember analysis,Pelalawan district,Spectral mixture analysis,Tropical peatland degradation[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.5194/isprsarchives-XL-7-W3-495-2015[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]