[vc_empty_space][vc_empty_space]
Configuration control of an autonomous vehicle under nonholonomic and field-of-view constra
Widyotriatmo A.a, Hong K.-S.b
a Instrumentation and Control Research Group, Bandung Institute of Technology, Bandung, 40132, Indonesia
b Department of Cogno-Mechatronics Engineering, School of Mechanical Engineering Pusan National University, Geumjeong-gu, Busan, 609-735, South Korea
[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]© 2015 by IJIR (CESER PUBLICATIONS).In this paper, a configuration (position and orientation) control problem of a forklift under the fieldof- view (FOV) constraint of a camera is considered. In designing a control law, three navigation variables (the distance error, two split angles of the orientation error) are utilized. The control problem is formulated as an asymptotic stabilization problem of the origin in the error space of the navigation variables, in which the orientation error associated with the direction of the vehicle to the goal point is constrained within the camera’s FOV. A barrier function (a continuous function whose value increases to infinity when its argument approaches the boundary of a constrained region) is used as a Lyapunov function candidate. The designed control law ensures the asymptotic stability of the origin, whereas the given constraint is never violated. The performance of the proposed method is compared with that without the FOV constraint. The effectiveness of the proposed method is demonstrated by experimental results of pallet picking.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Autonomous vehicle,Configuration control,Field-of-view constraint,Forklift,Nonholonomic constraint,Visual servo[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]