Enter your keyword

2-s2.0-84931356884

[vc_empty_space][vc_empty_space]

The effect of tin addition to ZnO nanosheet thin films for ethanol and isopropyl alcohol sensor applications

Yuliarto B.a, Julia S.a, Ni Luh Wulan S.a, Iqbal M.a, Ramadhani M.F.a, Nugrahaa

a Materials Processing Laboratory, Engineering Physics Research Group, Institut Teknologi Bandung, Bandung, 40132, Indonesia

[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]© 2015 Published by ITB Journal Publisher.The requirements of green environmental and public health monitoring have become stricter along with greater world attention for global warming. The most common pollutants in the environment that need tightened control are volatile organic compounds (VOC). Compared to other kinds of sensors, semiconductor sensors have certain advantages, including high sensitivity, fast response, simplicity, high reliability and low cost. In this work, ZnO and Sn-doped ZnO nanostructure materials with high surface nanosheet areas were synthesized using chemical bath deposition. The X-ray diffraction patterns could be indexed according to crystallinity mainly to a hexagonal wurzite ZnO structure. The scanning electron microscopy (SEM) results showed that in all samples, the thin films after the addition of Sn consisted of many kinds of microstructure patterns on a nanoscale, with various sheet shapes. The sensor performance characterizations showed that VOC levels as low as 3 vol% of isopropyl alcohol (IPA) and ethanol could be detected at sensitivities of 83.86% and 85.57%, respectively. The highest sensitivity of all sensors was found at an Sn doping of 1.4 at%. This high sensor sensitivity is a result of the high surface area and Sn doping, which in turn produced a higher absorption of the targeted gas.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Chemical-bath deposition,Health monitoring,High surface area,Isopropyl alcohols,Semiconductor sensors,Sensor performance,Sensor sensitivity,Volatile organic compound (VOC)[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Chemical bath deposition ethanol,Gas sensor,Isopropyl alcohol,Nanosheets,Thin films,Tin,Zinc oxide[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.5614/j.eng.technol.sci.2015.47.1.6[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]