[vc_empty_space][vc_empty_space]
Traffic analysis of number of request per user and Volume per Request Hits on IP networks
Haryadi S.a, Premitasari M.a
a Telecommunication Engineering, Bandung Institute of Technology, Bandung, Indonesia
[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]© 2014 IEEE.Packet switching is a switching technique by segmenting the data into packets to be passed in the idle path. This attracted attention for researchers to know how big the queues or congestion that occurs in it and how the shape of the distribution. The results of research on network-based traffic in a switching circuit generates traffic that follows the Poisson process. In the Poisson process, the amount of arrival traffic is distributed Poisson and negative exponentially distributed arrival intervals. The researchers wanted to know whether the new technology, traffic still meets the Poisson distribution or not. From the results obtained that traffic modeling of IP-Based by taking a sample of the number of requests per user and Volume per Request Hits, obtained IDI = 0.30556, which indicates that the traffic is not including the Poisson Distribution. Research with various approaches continuous distribution, the number of request user generates Pareto distributed with X (102; 0.5) and the Volume per Request Hits Gaussian distributed with X (6.4).[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Arrival intervals,Continuous distribution,Gaussian distributed,Poisson process,Switching techniques,Traffic analysis,Traffic model,VoIP[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Continuous Distribution,IDI,Packet Switching,Poisson distribution,Poisson process,VoIP[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.1109/TSSA.2014.7065932[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]