[vc_empty_space][vc_empty_space]
A Jarque-Bera test based spectrum sensing for cognitive radio
Subekti A.a, Sugihartonoa, Rachmana N.b, Suksmono A.B.b
a School of Electrical Engineering and Informatics, Bandung Institute of Technology (ITB), Indonesia
b Research Center for Informatics, Indonesian Institute of Sciences (LIPI), Indonesia
[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]© 2014 IEEE.A cognitive radio has to perform spectrum sensing to detect the vacant channel. The detection faces some challenges due to the required performance and limited knowledge on the primary signals and the channel. In this paper we proposed a blind spectrum sensing method for cognitive radio network. The proposed method based on the difference on distribution of the condition between when the transmission from primary user is active and when it’s inactive. If it is inactive, the received signal will contain only noise. The distribution of noise which is Gaussian, differs from the distribution of signal which is contaminated with noise. The Jarque-Bera (JB) test is used for the detection of the event. The target of the analysis is both the real and the imaginary parts of FFT’s output. The proposed algorithm was tested to detect the DTV signal. Results show that our method is performed better than previous similar method.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Blind spectrum sensing,Cognitive radio network,DTV signals,Imaginary parts,Jarque-bera tests,Primary Users,Received signals,Spectrum sensing[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.1109/TSSA.2014.7065944[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]