Enter your keyword

2-s2.0-84937510838

[vc_empty_space][vc_empty_space]

Metric dimension for amalgamations of graphs

Simanjuntak R.a, Uttunggadewa S.a, Saputro S.W.a

a Combinatorial Mathematics Research Group, Institut Teknologi Bandung, Bandung, 40132, Indonesia

[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]© Springer International Publishing Switzerland 2015.Aset of vertices S resolves a graphGif every vertex is uniquely determined by its vector of distances to the vertices in S.The metric dimension of G is the minimum cardinality of a resolving set of G. Let {G1,G2,…, Gn} be a finite collection of graphs and each Gi has a fixed vertex v0i or a fixed edge e0i called a terminal vertex or edge, respectively. The vertex-amalgamation of G1,G2,…, Gn, denoted by Vertex − Amal{Gi; v0i}, is formed by taking all the Gi’s and identifying their terminal vertices. Similarly, the edge-amalgamation of G1,G2,…, Gn, denoted by Edge − Amal{Gi; e0i}, is formed by taking all the Gi’s and identifying their terminal edges. Here we study the metric dimensions of vertex-amalgamation and edge-amalgamation for finite collection of arbitrary graphs.We give lower and upper bounds for the dimensions, show that the bounds are tight, and construct infinitely many graphs for each possible value between the bounds.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Cardinalities,Edge amalgamation,Lower and upper bounds,Metric dimensions,Terminal vertices[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.1007/978-3-319-19315-1_29[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]