Enter your keyword

2-s2.0-84937909480

[vc_empty_space][vc_empty_space]

The Investigation of CuOx Anode Interlayer Effect in Working Performance and Charge Carrier Transport in Hybrid Solar Cells with Inverted Structure

Tulusa,b, Hidayat R.b

a Center of Polymer Technology, Agency for the Assessment and Application of Technology, Serpong, Tangerang Selatan, Banten, 15314, Indonesia
b Physics of Magnetism and Photonics, Faculty of Mathematics and Natural Sciences, Bandung Institute of Technology, Bandung, Indonesia

[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]© 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.Summary A study on the use of CuOx, which is intended for replacing PEDOT:PSS as an anode interlayer in inverted hybrid solar cells, has been carried out. The fabricated solar cells have typical configuration structure of ITO/AZO/P3HT:PCBM/CuOx/Ag. AZO and CuOx thin layers were prepared by the sol gel method, while P3HT:PCBM layer was prepared by the spin-coating method. The solar cell performances were found to be affected by the addition of CuOx interlayer. Solar cells with CuOx interlayer exhibit better working performance parameters (short-circuited photocurrent density, filling factor and power conversion efficiency) in comparison to solar cells without using CuOx interlayer. These improvements are attributed to more efficient charge extraction due to reduction of trapping or recombination loss, which is in agreement with the observed photocurrent transient characteristics.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Charge extraction,Hybrid solar cells,Photocurrent density,Photocurrent transients,Power conversion efficiencies,Solar cell performance,trapping,Working performance[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text]anode interlayer,charge extraction,inverted hybrid solar cell,photocurrent transient,sol-gel method,spin coating,trapping[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.1002/masy.201550316[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]