[vc_empty_space][vc_empty_space]
Hyperinvariant subspaces of locally nilpotent linear transformations
Astuti P.a, Wimmer H.K.b
a Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Bandung, 40132, Indonesia
b Mathematisches Institut, Universität Würzburg, Würzburg, 97074, Germany
[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]© 2015 Elsevier Inc. All rights reserved.A subspace X of a vector space over a field K is hyperinvariant with respect to an endomorphism f of V if it is invariant for all endomorphisms of V that commute with f. We assume that f is locally nilpotent, that is, every xV is annihilated by some power of f, and that V is an infinite direct sum of f-cyclic subspaces. In this note we describe the lattice of hyperinvariant subspaces of V. We extend a result of Fillmore, Herrero and Longstaff (1977) [2] to infinite dimensional spaces.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Cyclic subspaces,Endomorphism ring,Exponent,Height,Hyperinvariant subspaces,Invariant subspace,Nilpotent operators[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Cyclic subspaces,Endomorphism ring,Exponent,Height,Hyperinvariant subspaces,Invariant subspaces,Locally nilpotent operators[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.1016/j.laa.2015.09.002[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]