[vc_empty_space][vc_empty_space]
Efficient acetalization of benzaldehydes using UiO-66 and UiO-67: Substrates accessibility or Lewis acidity of zirconium
Arrozi U.S.F.a, Wijaya H.W.a, Patah A.a, Permana Y.a
a Inorganic and Physical Chemistry Research Division, Institut Teknologi Bandung, Bandung, 40132, Indonesia
[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]© 2015 Elsevier B.V. All rights reserved.Porous metal-organic frameworks of Zr6O4(OH)4 clusters connected by organic linkers of 1,4-benzenedicarboxylate (UiO-66) and biphenyl-4,4′-dicarboxylate (UiO-67) were prepared using a solvothermal method and used as efficient catalysts for acetalization of benzaldehydes with alcohols. UiO-66 showed better catalytic activity than UiO-67, (i.e. 91% vs 86%) when the catalyst was employed in the benzaldehyde acetalization in methanol for an hour at r.t. (28 °C). UiO-66 was further explored as the catalyst to observe effects of catalyst concentrations, alcohols, bulkier benzaldehydes, and recyclability. The performance of other catalysts, including the MOF precursor, was also examined to compare the activity and to explain the importance of a MOF structure. Relative Lewis acidity of Zr in UiO-66 and UiO-67 was achieved by natural bond orbital (NBO) analysis using DFT/B3LYP method. It was found that accessibility of substrates to internal active sites might play a dominant role than the Lewis acidity of Zr-MOFs.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Acetalization,Catalytic properties,Lewis acidity,NBO analysis,UiO-66,UiO-67[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Acetalization,Catalytic properties,Lewis acidity,NBO analysis,UiO-66,UiO-67[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text]USFA thanks to BU-DIKTI scholarship for Master Program at Chemistry Department of ITB. HWW acknowledges Prof. Effendy (Universitas Negeri Malang) for financial support in completing Master Program at Chemistry Department of ITB. AP and YP acknowledge Hibah IA-ITB 2011 and Hibah Desentralisasi Dikti 2015 for financial support on Zr-MOFs research and also for Hibah Kerma-LN DIKTI 2012 for partial support on catalysis research using organic/inorganic hybrid materials. Authors acknowledge HPC (High Performance Computing) facilities at ITB and thank to Dr. Muhamad Abdulkadir Martoprawiro, Dr. Muhammad Yusuf, Mr. Raden Aditya Wibawa for fruitful discussion on DFT-NBO calculations.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.1016/j.apcata.2015.08.028[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]