[vc_empty_space][vc_empty_space]
Roles of alumina, a base catalyst, a fine particle effect on the metastable phase stabilization of the tetragonal zirconia at temperatures of 600-800 °C
Septawendar R.a,b, Suhandaa, Soesilowatia, Purwasasmita B.S.b
a Department of Advanced Ceramics, Glass, and Enamel, Center for Ceramics, Ministry of Industry of Indonesia, Bandung, 40272, Indonesia
b Laboratory of Advanced Material Processing, Engineering Physics Department, Institute of Technology Bandung, Bandung, Indonesia
[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]© 2015 Hanyang University. All rights reserved.Nanoparticles of the tetragonal alumina-stabilized zirconia were synthesized from zirconium salt of ZrOCl2 • 8H2O and approximately 23 wt % alumina stabilizer with ammonia as a base catalyst and sucrose as a gelling agent at a room temperature. In the preparation process of nanoparticles of alumina-stabilized zirconia, the calcination was conducted at temperatures of 500-800 °C. The calcined powder was analyzed and characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), and scanning electron microscopy (SEM) studies. The tetragonal phase of ZrO2 started to crystallize at a low temperature of 500 °C. Further phase transformation of the alumina-stabilized zirconia maintained the tetragonal ZrO2 at 600 °C. Besides, the addition of sucrose by weight ratio of 1 : 6 to the total weight precursors produced nanoparticles of alumina-stabilized zirconia less than 20 nm in size at that temperature. The tetragonal phase of ZrO2 was stable and no transition alumina was identified at 800 °C. It is suggested that alumina is in solid solution in the tetragonal zirconia polymorph at that temperature. The typical SEM images show high agglomeration of ultrafine microstructures of alumina-stabilized zirconia nanoparticles at that temperature. The results indicate that the method represents an effective methodology for the preparation of alumina-stabilized zirconia nanoparticles at a lower temperature than 800 °C.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Alumina,Ammonia catalyst,Low calcination temperatures,Nanoparticles effect,Sucrose,Tetragonal zirconia[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]