[vc_empty_space][vc_empty_space]
Curvatures and discrete Gauss-Codazzi equation in (2 + 1)-dimensional loop quantum gravity
Ariwahjoedi S.b, Kosasih J.S., Rovelli C.b, Zen F.P.
a Aix Marseille Université, CNRS, CPT, UMR 7332, Marseille, 13288, France
b Institut Teknologi Bandung, West Java, Bandung, 40132, Indonesia
c Université de Toulon, CNRS, CPT, UMR 7332, La Garde, 83957, France
[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]© 2015 World Scientific Publishing Company.We derive the Gauss-Codazzi equation in the holonomy and plane-Angle representations and we use the result to write a Gauss-Codazzi equation for a discrete (2 + 1)-dimensional manifold, triangulated by isosceles tetrahedra. This allows us to write operators acting on spin network states in (2 + 1)-dimensional loop quantum gravity, representing the 3-dimensional intrinsic, 2-dimensional intrinsic, and 2-dimensional extrinsic curvatures.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text]curvatures,Discrete geometry,Gauss-Codazzi equation,Regge geometry[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.1142/S0219887815501121[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]