[vc_empty_space][vc_empty_space]
Twitter information extraction for smart city
Hanifah R.a, Supangkat S.H.a, Purwarianti A.a
a School of Electrical and Informatics Engineering, Bandung Institute of Technology, Bandung, Indonesia
[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]© 2014 IEEE.In Indonesia, Bandung is the second most active Twitter user, which means a lot of tweets have been shared among Bandung people on Twitter. Tweets can be used as a data source to explore information related to the city. One example is information related to traffic congestion, such as information of location, date, and time when the traffic congestion happened. In this study, we proposed a method to filter the tweets related to traffic congestion in Bandung and to extract the information of location, time, date and image (if any). SVM with several variations of the weighting and the selection of features is used for filtering process. The results showed that the greatest accuracy rate is 83% use Binary weighting method in top-2000 features. Meanwhile, information extraction process carried out by a rule-based approach, gave satisfactory results, around 98%-100% for the extraction of date, time and URL. However, the extraction of location information only gave accuracy of about 62%. It was caused by OOV (Out of Vocabulary) and OOR (Out of Rules).[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Accuracy rate,Filtering process,Location information,Rule-based approach,Smart cities,Social sensors,Twitter,Weighting methods[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text]information extraction,social sensor,Support Vector Machine (SVM),traffic congestion,Twitter[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.1109/ICTSS.2014.7013190[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]