[vc_empty_space][vc_empty_space]
Design optimization of axial hydraulic turbine for very low head application
Muis A.a,b, Sutikno P.a, Soewono A.a, Hartono F.a
a Bandung Institute of Technology, Bandung, 40132, Indonesia
b Tadulako University, Jalan Soekarno-Hatta, Palu, 94118, Indonesia
[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]© 2015 The Authors. Published by Elsevier Ltd.Studies are conducted on axial hydraulic turbine for very low head application which operates on low speed. Design optimization is generated by optimizing the blade airfoil and blade cascade during development of the turbine blades. Blade airfoil is optimized to obtain optimum value of ratio of Lift coefficient Cl and Drag coefficient Cd, in the range of turbine operation by utilizing of XFOIL that controlled via MATLAB. These airfoils are used to develop the blade cascade. To increase the benefits of fluid flow passing through the turbine blades, the analysis and optimization of the blade cascade is conducted. Vortex panel method is used to analyze the fluid flow inside cascade to gain the maximum of the lift force, in order to optimize the potential power of the fluid that can be utilized by the turbine rotor. The cascade optimization is including arrangement of the incidence angle of the cascade to reduce cascade losses and blade loading by applying the concept of shock-free inflow. Numerical analyses are conducted to determine the performance of the designed turbine with the commercial CFD. The results of numerical simulations show that the turbine can be operated at a maximum efficiency of 91% at various ranges of flow rates.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Design optimization,Incidence angles,Lift coefficient,Low head,Maximum Efficiency,Potential power,Turbine operation,Vortex-panel method[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Hydraulic turbine,Matlab,Optimization,Very low head,Vortex panel method[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text]The author would like to express special thanks to BPPS Dikti and ITB for financial support and for a chances to study and research.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.1016/j.egypro.2015.03.255[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]