[vc_empty_space][vc_empty_space]
Performance enhancement of coupled microstrip lines using split ring resonators
Munir A.a, Soeka L.R.G.a
a Radio Telecommunication and Microwave Laboratory, School of Electrical Engineering and Infomatics, ITB, Bandung, Indonesia
[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]© 2014 IEEE.A novel technique to enhance the performance of coupled microstrip lines (CML) is proposed by incorporating the structure of split ring resonators (SRR). The structure of CML which is conventionally designed on a grounded dielectric substrate is reconstructed by inserting the structure of SRR between the lines and the groundplane. This construction is expected to improve the performance of CML, i.e. reflectivity, transmittivity, and cross-talks. The number of SRR incorporated in the structure is limited into 4 pieces per line due to the available of space. The proposed structure of CML with SRR is then deployed on 2 stacked layers of FR4 Epoxy dielectric substrate with the total thickness of 1.6mm and the dimension of 36mm × 80mm. Prior to the hardware realization, the geometry of SRR is investigated numerically to obtain the optimum performance of coupled microstrip lines. From the results, it shows that the measured results for Snn and Snm are comparable to the numerical ones obtained from simulations. The reflectivity, Snn, for each port is less than-20dB, while the transmittivity, Snm, is closed to OdB. The measured results also show that the near- and far-cross-talks are-30dB and-35dB, respectively.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Coupled microstrip lines,Dielectric substrates,Hardware realization,Optimum performance,Performance enhancements,Split ring resonator,Split-ring resonators (SRR),Transmittivity[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Coupled microstrip lines,cross-talk,reflectivity,split ring resonators,transmittivity[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.1109/ICEECS.2014.7045283[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]