Enter your keyword

2-s2.0-84949925795

[vc_empty_space][vc_empty_space]

Vision-based Monte Carlo localization for RoboCup Humanoid Kid-Size League

Nagi I.a, Adiprawita W.a, Mutijarsa K.a

a Department of Electrical Engineering, STEI – Institut Teknologi Bandung, Bandung, West Java, 40135, Indonesia

[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]© 2014 IEEE.Localization is the most fundamental ability for winning the RoboCup Humanoid League Competition. In this paper, we present a vision-based localization method called Monte Carlo Localization (MCL) to deal with the limited landmarks left in RoboCup, such as the yellow goal posts and field markers. In the beginning, we give brief explanation of perception system. Next, we give detailed implementation of MCL, an improvement of the resampling step that has been develop before, and the process of estimating the localization result. We perform all experiments on our humanoid robot named Zared-vl.0. Results show that the modified resampling technique in MCL give better result in estimating robot position and orientation on normal and kidnapping condition.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Humanoid robot,League competition,Localization,Monte Carlo localization,Perception systems,Resampling technique,RoboCup,Vision based localization[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Humanoid Robots,Localization,Monte Carlo Localization,RoboCup[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.1109/ICARCV.2014.7064526[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]