[vc_empty_space][vc_empty_space]
Design and implementation of kinematics model and trajectory planning for NAO humanoid robot in a tic-tac-toe board game
Nugroho S.A.a, Prihatmanto A.S.a, Rohman A.S.a
a Advanced Robotics Research Laboratory, Control and Computer Systems Research Group, Bandung Institute of Technology Bandung, Indonesia
[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]© 2014 IEEE.The ability of NAO robot to play tic-tac-toe board game using its hands is greatly determined by the kinematics model of NAO’s arms and the use of trajectory planning for manipulation tasks. In this paper, kinematics models for NAO’s upper body are presented. The forward kinematics models are designed by using the modified Denavit-Hartenberg convention. The inverse kinematics models of 5-joints NAO’s arms are obtained by using analytical inverse transform technique in which provide unique and feasible solutions. The movement of NAO’s arms while playing tic-tac-toe is constructed by using the proposed 3-Dimensional Cartesian Space trajectory planning method. The test result shows that the implemented trajectory planning method along with kinematics model are able to make NAO robot plays tic-tac-toe well by using its hands.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Design and implementations,Forward kinematics,Inverse transform techniques,Kinematics modeling,Kinematics models,Playing tic-tac-toe,Trajectory Planning,Trajectory planning method[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text]kinematics model,NAO robot,trajectory planning[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.1109/ICSEngT.2014.7111783[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]