[vc_empty_space][vc_empty_space]
Numerical simulation of coal pyrolysis with Tar and Gas products prediction
Sasongko D.a, Arifpin N.Y.a, Rasrendra C.B.a, Indarto A.a
a Department of Chemical Engineering, Faculty of Industrial Technology, Institut Teknologi Bandung, Jl. Bandung, Indonesia
[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]© 2015 Curtin University of Technology and John Wiley & Sons, Ltd.Coal pyrolysis products can vary both in species and composition that are influenced by internal coal properties and process parameters, including temperature and heating rate during the pyrolysis process. In order to accurately predict the composition of the pyrolysis products, a mathematical model with correct formulation of heat transfer inside the coal particle is necessary to be developed. In this report, the inclusion of heat transfer term to the recent development of fragmentation and diffusion (FD) model is discussed and used to determine the coal pyrolysis products in various operating conditions. Derived from the model result, it concludes that the increment of reaction temperature led to higher rate of secondary reactions and suppress the production of tar. Taking the lignite-type coal pyrolysis of Zap North Dakota (average particle radius of 30 μm) as the sample, at temperature of 600°C, 96.4% of primary tar was produced by the primary reaction and diffused outward, while at temperature of 950°C, 49.9% of primary tar undergo secondary reactions.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Coal properties,Operating condition,Primary reaction,Process parameters,Pyrolysis process,Pyrolysis products,Reaction temperature,Secondary reactions[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text]coal,heat transfer,mathematical models,pyrolysis,secondary reaction[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.1002/apj.1958[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]