Enter your keyword

2-s2.0-84953223740

[vc_empty_space][vc_empty_space]

Visual serving of fixed-wing unmanned aerial vehicle using command filtered backstepping

Triputra F.R.a,b, Trilaksono B.R.b, Adiono T.b, Sasongko R.A.b

a Center for Information and Communication Technology, Agency for the Assessment and Application of Technology, Indonesia
b School of Electrical Engineering and Informatics, Institut Teknologi Bandung, Indonesia

[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]© 2015, School of Electrical Engineering and Informatics. All rights reserved.This paper presents a full dynamic visual serving flight controller design using command filtered backstepping (CFBS) control law for a fixed-wing unmanned aerial vehicle (UAV). A full nonlinear dynamic model that involves feature point motion, pan-tilt gimbal mechanism movement, and UAV flight dynamic is adapted to the controller design of CFBS. The proposed design scheme can provide a system which is easy to implement in various fixed-wing UAV platforms, since it only needs physical characteristics such as mass, mass of inertia, center of gravity, geometry and propeller-engine to configure the system. Further, additional novel algorithms are developed and added to the original CFBS control law design to make longitudinal and lateral-directional maneuvers safer and smoother. The proposed algorithm is implemented and tested in both numerical simulation and hardware-in-the-loop simulation (HILS). HILS is conducted by implementing the algorithm on the real UAV on-board hardware that consist of an embedded PC for image extraction and a microcontroller for the flight controller. The numerical simulation and HILS results show that the developed system is able to perform target tracking and pursuing task effectively.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Command filtered backstepping,Fixed-wing unmanned aerial vehicle,Image based visual servoing,Target tracking,Visual based flight controller[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.15676/ijeei.2015.7.4.4[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]