Enter your keyword

2-s2.0-84957725458

[vc_empty_space][vc_empty_space]

A non-hydrostatic numerical scheme for dispersive waves generated by bottom motion

Tjandra S.S.a,b, Pudjaprasetya S.R.a

a Industrial and Financial Mathematics Research Group, Bandung Institute of Technology, Bandung, 40132, Indonesia
b Industrial Engineering, Parahyangan Catholic University, Bandung, 40141, Indonesia

[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]© 2015 Elsevier B.V.A numerical scheme based on the staggered finite volume method is presented at the aim of studying surface waves generated by a bottom motion. We address the 2D Euler equations in which the vertical domain is resolved only by one layer. The resulting non-hydrostatic scheme is used to simulate surface waves generated by bottom motion in a water tank. Here we mimic Hammack experiments numerically, in which a bed section is moved upwards or downwards, resulting in transient dispersive waves. For an impulsive downward bottom thrust, free surface responds in terms of a negative leading wave, followed with dispersive train of waves. For an upward bottom thrust, amplitude of the leading wave decays as the wave propagates, and no wave of permanent form evolves- instead, there appears a train of solitons. In this article, we show that our numerical scheme can produce the correct wave profiles, comparable with the analytical and experimental results of Hammack. Simulations using intermediate and slow bottom motions are also presented. In addition, we perform a simulation of a wave generated by submerged landslide, that compares well against previous numerical simulations. Via this simulation, we demonstrate that our scheme can incorporate a moving wet-dry boundary algorithm in the run-up simulation.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text]2D Euler equations,Bottom motion,Dispersive waves,Non-hydrostatic,Nonhydrostatic model,Numerical scheme,Permanent forms,Wave profiles[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Bottom motion,Dispersive wave,Non-hydrostatic model[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.1016/j.wavemoti.2015.04.008[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]