[vc_empty_space][vc_empty_space]
Bandwidth improvement of square patch array-based AMC using multiple slots technique
Munir A.a, Nur L.O.b
a Radio Telecommunication and Microwave Laboratory, School of Electrical Engineering and Informatics, ITB, Bandung, Indonesia
b School of Electrical Engineering, Telkom University, Bandung, Indonesia
[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]© 2015 IEEE.An investigation of bandwidth improvement for artificial magnetic conductor (AMC) structure based on square patch array by using multiple slots technique is presented. The technique is proposed in overcoming the nature characteristic of square patch as a unit cell of AMC structure which has narrowband bandwidth response. The structure which is designed to work at center frequency around 2.7GHz is constructed of a 2D array of unit cells in which each unit cell is built from a 10.5mm × 10.5mm square patch placed on a grounded dielectric substrate. Each unit cell of AMC structure has the dimension of 12.5mm × 12.5mm and is deployed on a 2.54mm thick Taconic CER-10TM dielectric substrate with the relative permittivity of 10. Meanwhile, the number of slots on the square patch is varied to investigate its effect to the bandwidth response of structure as well as the width of slot and the separation between slots. From the characterization result, although the resonant frequency is shifted as the presence of slots, it shows that the bandwidth response can be enhanced up to 13% as the increase of number of slot. The similar trends also appear for the wider slot width and the larger separation between slots.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Artificial magentic conductor (AMC),Artificial magnetic conductors,Bandwidth enhancement,Center frequency,Dielectric substrates,multiple slot,Relative permittivity,Square patches[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Artificial magentic conductor (AMC),bandwidth enhancement,multiple slot,square patch[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.1109/ICoICT.2015.7231412[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]