[vc_empty_space][vc_empty_space]
Humanoid robosoccer goal detection using hough transform
Sanusi B.N.a, Adiprawita W.a, Mutijarsa K.a
a Department of Electrical Engineering, School of Electrical Engineering and Informatics, Institut Teknologi Bandung, Bandung, West Java, 40132, Indonesia
[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]© 2015 IEEE.Goal posts detection is a critical robot soccer ability which is needed to be accurate, robust and efficient. A goal detection method using Hough transform to get the detailed goal features is presented in this paper. In the beginning, the image preprocessing and Hough transform implementation are described in detail. A new modification on the θ parameter range in Hough transform is explained and applied to speed up the detection process. Line processing algorithm is used to classify the line detected, and then the goal feature extraction method, including the line intersection calculation, is done. Finally, the goal distance from the robot body is estimated using triangle similarity. The experiment is performed on our university humanoid robot with the goal dimension of 225 cm in width and 110 cm in height, in yellow color. The result shows that the goal detection method, including the modification in Hough transform, is able to extract the goal features seen by the robot correctly, with the lowest speed of 5 frames per second. Additionally, the goal distance estimation is accomplished with maximum error of 20 centimeters.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Detection process,Distance estimation,Feature extraction methods,Frames per seconds,Goal detection,Humanoid robot,Image preprocessing,Parameter range[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text]goal detection,Hough transform,humanoid robot soccer[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.1109/ICCEREC.2015.7337035[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]