Enter your keyword

2-s2.0-84961294443

[vc_empty_space][vc_empty_space]

Numerical analysis for wave propagation in circular waveguide using cylindrical coordinate system-based FDTD method

Rahmatillah R.a, Chairunnisa A.a, Munir A.a

a Radio Telecommunication and Microwave Laboratory, School of Electrical Engineering and Infomatics, Institut Teknologi Bandung, Indonesia

[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]© 2014 IEEE.Several problems of electromagnetic fields can be solved by various numerical methods. One of the methods is finite-difference time-domain (FDTD) where in this work is addressed for modeling a hollow circular waveguide and its wave propagation analysis. Different from other FDTD methods which is usually based-on Cartesian coordinate system, in current paper the cylindrical coordinate system is employed as a basis for computation. The method in two- and three-dimension (2D and 3D) systems is employed to model a circular waveguide which has the radius of 50m and length of 100m. A sine wave modulated Gaussian signal with frequency of 3MHz is applied as a wave source for computation. To truncate the computation area, the second order absorbing boundary condition (ABC) is assigned at the outer side and the center of waveguide. From the numerical result, it shows that the amplitude of wave that propagates from the inner to the outer of waveguide decreases along the radius due to the grid size in cylindrical coordinate system based-FDTD method both in 2D and 3D systems.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Absorbing boundary condition,Cartesian coordinate system,Cylindrical coordinate systems,Cylindrical coordinates,Finite -difference time domains (FDTD),Numerical results,Propagation analysis,Second-order absorbing boundary condition[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Absorbing boundary condition,circular waveguide,cylindrical coordinate,FDTD numerical method[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.1109/ICAICTA.2014.7005942[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]